

Deep Learning for Data Science DS 542

https://dl4ds.github.io/fa2025/

Gradient Descent

Announcements

- Re: discussion deadlines are moving to 11:59pm on the day of discussion.
 - Why? The practice is more important than the timing.
 - Still targeting ≤ 30 minutes to do, but more time if you need/want it.
- Shared Compute Cluster (SCC) Tutorial next Monday.
 - Please bring your laptop to class.
 - No graded exercise, but will be walking through account setup.

Plan for Today

- Loss functions for multiclass classification (spillover)
- Example of gradient descent
- Basics of gradient descent
- Gradient descent as a statistical process
- Challenges with gradient descent

Loss Function for Regression

If you recast regression as

- 1. Predicting the mean of a normal distribution with a fixed variance and
- 2. Optimize output for maximum likelihood,

Then the optimization is equivalent to optimizing with least squared errors (L_2) as your loss function.

Loss Function for Binary Classification

If you are modeling a binary classification problem,

- 1. The sigmoid function is handy to map arbitrary "scores" into probabilities, so
- 2. Your loss function is equivalent to

$$L[\phi] = \sum_{i} -(1 - y_i) \log[1 - \text{sig}[f[x_i | \phi]] - y_i \log[\text{sig}[f[x_i | \phi]]]$$

Conceptualizing the Binary Loss Function

$$L[\phi] = \sum_{i} -(1 - y_i) \log[1 - \text{sig}[f[x_i | \phi]] - y_i \log[\text{sig}[f[x_i | \phi]]]$$

$$L[\phi] = \sum_{i} -(1 - y_i) \log \Pr[y_i = 0 | x_i] - y_i \log \Pr[y_i = 1 | x_i]$$

$$L[\phi] = \sum_{i} -\log \Pr[y_i | x_i]$$

Goal: predict which of K classes $y \in \{1, 2, ..., K\}$ the input x belongs to.

- 1. Choose a suitable probability distribution $Pr(\mathbf{y}|\boldsymbol{\theta})$ that is defined over the domain of the predictions \mathbf{y} and has distribution parameters $\boldsymbol{\theta}$.
- Domain: $y \in \{1, 2, ..., K\}$
- Categorical distribution
- K parameters $\lambda_k \in [0,1]$
- $\sum_k \lambda_k = 1$

$$Pr(y=k)=\lambda_k$$

2. Set the machine learning model $\mathbf{f}[\mathbf{x}, \boldsymbol{\phi}]$ to predict one or more of these parameters so $\boldsymbol{\theta} = \mathbf{f}[\mathbf{x}, \boldsymbol{\phi}]$ and $Pr(\mathbf{y}|\boldsymbol{\theta}) = Pr(\mathbf{y}|\mathbf{f}[\mathbf{x}, \boldsymbol{\phi}])$.

Problem:

- Output of neural network can be anything
- Parameters $\lambda_k \in [0,1]$, sum to one

$$\operatorname{softmax}_{k}[\mathbf{z}] = \frac{\exp[z_{k}]}{\sum_{k'=1}^{K} \exp[z_{k'}]}$$

Solution:

 Pass through function that maps "anything" to [0,1] and sums to one

$$Pr(y = k|\mathbf{x}) = \operatorname{softmax}_k[\mathbf{f}[\mathbf{x}, \boldsymbol{\phi}]]$$

$$Pr(y = k|\mathbf{x}) = \operatorname{softmax}_k[\mathbf{f}[\mathbf{x}, \boldsymbol{\phi}]]$$

3. To train the model, find the network parameters ϕ that minimize the negative log-likelihood loss function over the training dataset pairs $\{\mathbf{x}_i, \mathbf{y}_i\}$:

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[L[\boldsymbol{\phi}] \right] = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[-\sum_{i=1}^{I} \log \left[Pr(\mathbf{y}_i | \mathbf{f}[\mathbf{x}_i, \boldsymbol{\phi}]) \right] \right]. \tag{5.7}$$

$$L[\boldsymbol{\phi}] = -\sum_{i=1}^{I} \log \left[\operatorname{softmax}_{y_i} \left[\mathbf{f} \left[\mathbf{x}_i, \boldsymbol{\phi} \right] \right] \right]$$
 softmax_k[\mathbf{z}] = \frac{\exp[z_k]}{\sum_{k'=1}^{K} \exp[z_{k'}]}

$$= -\sum_{i=1}^{I} \mathrm{f}_{y_i} \left[\mathbf{x}_i, \boldsymbol{\phi} \right] - \log \left[\sum_{k=1}^{K} \exp \left[\mathrm{\ f}_k \left[\mathbf{x}_i, \boldsymbol{\phi} \right] \right] \right]$$

4. To perform inference for a new test example \mathbf{x} , return either the full distribution $Pr(\mathbf{y}|\mathbf{f}[\mathbf{x},\hat{\boldsymbol{\phi}}])$ or the maximum of this distribution.

Choose the class with the largest probability We also get probability or "confidence"

Any questions?

Multiple outputs

• Treat each output y_d as independent:

$$Pr(\mathbf{y}|\mathbf{f}[\mathbf{x}_i, \boldsymbol{\phi}]) = \prod_d Pr(y_d|\mathbf{f}_d[\mathbf{x}_i, \boldsymbol{\phi}])$$

where $\mathbf{f}_d[\mathbf{x}, \phi]$ is the d^{th} set of network outputs

Negative log likelihood becomes sum of terms:

$$L[\boldsymbol{\phi}] = -\sum_{i=1}^{I} \log \left[Pr(\mathbf{y}|\mathbf{f}[\mathbf{x}_i, \boldsymbol{\phi}]) \right] = -\sum_{i=1}^{I} \sum_{d} \log \left[Pr(y_{id}|\mathbf{f}_d[\mathbf{x}_i, \boldsymbol{\phi}]) \right]$$

Any questions?

An Example of Gradient Descent

- X is 100 samples from a normal distribution.
 - What were the parameters of that normal distribution?
 - What was the mean of that normal distribution?

Visualizing Gradient Descent

Basics of Gradient Descent

- Given current set of parameters ϕ_t ,
 - Calculate all partial derivatives $\frac{\partial L[\phi]}{\partial \phi_i}$ based on current parameters ϕ_t .
 - The vector of these $\frac{\partial L[\phi]}{\partial \phi_i}$ is the gradient of the loss function $\nabla L[\phi]$.
 - Update $\phi_{t+1} = \phi_t \alpha \nabla L[\phi]$

where α is the learning rate.

What should the learning rate be?

• Try $\alpha = 1$.

- Too small, and it takes many steps to get close.
- Too big, and it overshoots.

Convex Loss Functions

 Generally, a lot easier to optimize...

 With gradient descent, main issue is not overshooting minimum too much.

Non-Convex Loss Functions

Image Source: Understanding Deep Learning, via https://udlbook.github.io/udlfigures/

Any questions?

Gradient Descent as a Statistical Process

- Our training data is a sample of the whole population.
 - Different training samples yield different training loss functions.

Loss Functions for Different Training Samples

• If we collect different training data sets, will we get different models?

Loss Functions for Samples of the Training Set

• If we sample the training data, will we get different models?

Comparing Models with Different Training Samples

 How far apart are the models of these samples?

 Where do they agree and disagree?

A Weird Loss Function

Local Minima vs Samples of the Training Set

Stochastic Gradient Descent

Idea: Run gradient descent with "mini batches" instead of the full training set.

- E.g. pick a random partition of data into 10 equal-sized batches.
- One epoch = running through all the data once.
 - Vanilla gradient → one parameter update.
 - Stochastic gradient descent → one parameter update per mini batch.

Variation in Sampled Gradients

- Expected mini batch gradient = whole training set gradient.
 - On average, they agree.
 - But with noise from sampling.

- But remember, just taking one step with each mini batch.
 - Not optimizing to mini batch minimum loss.

Local Minima vs Stochastic Gradient Descent

 When far from a local minima, mini batches tend to agree on gradient direction.

- When close to a local minima, mini batches disagree more.
 - Sampling noise.
 - Explore the flat area around the minima.

Speed of Stochastic Gradient Descent

How fast is this compared to vanilla gradient descent?

Any questions?

Gradient Descent as a Universal Algorithm

What's the catch?

How do we pick Learning Rate?

• Remember, $\alpha = 1$ gives an infinite loop.

Also, be impatient.

Really Bad Linear Regression

•
$$f(x) = f_1\left(f_2\left(f_3(f_4(x))\right)\right)$$

$$\bullet f_1(x) = a_1 x + b_1$$

$$\bullet f_2(x) = a_2 x + b_2$$

•
$$f_3(x) = a_3x + b_3$$

•
$$f_4(x) = a_4 x + b_4$$

Really Bad Linear Regression (part 2)

•
$$f(x) = f_1\left(f_2\left(f_3(f_4(x))\right)\right)$$

$$\bullet f_1(x) = a_1 x + b_1$$

$$\bullet f_2(x) = a_2 x + b_2$$

$$\bullet f_3(x) = a_3 x + b_3$$

$$\bullet f_4(x) = a_4 x + b_4$$

• Initialize all parameters to zero.

What are the gradients?

Really Bad Linear Regression (part 3)

•
$$f(x) = f_1\left(f_2\left(f_3(f_4(x))\right)\right)$$

$$\bullet f_1(x) = a_1 x + b_1$$

$$\bullet f_2(x) = a_2 x + b_2$$

$$\bullet f_3(x) = a_3 x + b_3$$

$$\bullet f_4(x) = a_4 x + b_4$$

• Initialize all parameters to 100.

What are the gradients?

Really Bad Linear Regression (part 4)

•
$$f(x) = f_1\left(f_2\left(f_3(f_4(x))\right)\right)$$

$$\bullet f_1(x) = a_1 x + b_1$$

$$\bullet f_2(x) = a_2 x + b_2$$

•
$$f_3(x) = a_3 x + b_3$$

$$\bullet f_4(x) = a_4 x + b_4$$

 We will see both these problems with neural networks if we use the wrong initialization.

Any questions?